THE SPUTTERING RATE OF ELEMENTS IN DC GLOW DISCHARGE, USED IN ATOMIC EMISSION SPECTROMETRY

A. L. Chicherskaya, A. A. Pupyshev

Аннотация


The numerical values of the cathode sputtering rate of the materials are needed to conduct the layered analysis and produce multi-matrix calibration dependencies using the method of atomic emission spectrometry glow discharge. In the current work the cathode sputtering rate in DC glow discharge was measured for 26 elements. A comparison with published data showed good consistency of the results and confirmed the need for such measurements for the specific conditions of the analysis. It was determined that the values of the cathode sputtering rate of elements are dependent on their physicochemical characteristics in a complex manner. The relationship between the cathode sputtering rate of elements with their physical and chemical properties such as atomic number, atomic weight, melting and boiling points, the sublimation energy and the energy of the crystal lattice was studied in a great detail. The periodic dependence of the values of the sputtering rate of elements from their atomic number and atomic mass was demonstrated and also confirmed by the published data. According to the P. Sigmund’s theory of sputtering solids and semi-empirical equation of the sputtering coefficient it was found that the cathode sputtering rate of the material depends on the energy of sublimation i.e. it is determined by the values of its atomic radius, melting point and density. The found relationship was confirmed by the statistical calculations using both linear and non-linear regression. The discovered dependence of the cathode sputtering rate from the physicochemical characteristics of the metal allows predicting the velocity dispersion of the material, identify erroneous measurements and evaluate the limits of applicability of the analysis method.

Keyword: atomic-emission spectrometry, current direct glow discharge, the sputtering rate of metals, physical-chemical properties of metals, theory spraying solids, sputtering coefficient.   

DOI: http://dx.doi.org/10.15826/analitika.2015.19.3.003


Полный текст:

PDF (Russian)

Литература


Understanding calibration for glow discharge optical emission spectrometry (GD-AES). Spectroscopy Performance Note. LECO Corporation, 2011. 3 p.

Sputtering Rates. Available at: http://www.tazgmbh.com/pdf/sputterraten.pdf (accessed 03 August 2015 г).

Nelis T., Payling R. Glow Discharge Optical Emission Spectroscopy A Practical Guide. Cambrige: RSC, 2003. 227 p. doi:10.1039/9781847550989-FP001.

Maul Ch.L. Glow Discharge Atomic Emission Spectrometry: The Methodology, Calibration and Analytical Performance for Bulk and Quantitative Depth Profile Analysis. ILAP Conference. USA, 2008, pp. 71.

Kuypers S., Chen H., Havermans D., Kemps R. , Schoeters M., Wegener W., Bourgeois Y., Crener K., Jadin A. Glow discharge optical emission spectrometry for the analysis of metallic coatings on steel GAMeS. Available at: http://www.belspo.be/belspo/organisation/publ/pub_ostc/NM/NMA06_en.pdf (accessed 03.08.2015).

Chicherskaia A.L., Pupyshev A.A. [Characterisation of sputtering electroplating Ni-P using atomic emission spectrometer with glow discharge GDS 850 A]. Analitika i kontrol' [Analytics and Control], 2014, vol. 18, no. 1, pp. 54-62 (in Russian).

Samsonov G. V. Fiziko-khimicheskie svoistva elementov. Spravochnik. [Physico-chemical properties of the elements. Directory]. Kiev: Naukova dumka, 1965, 807 p. (in Russian).

Kittel' Ch. Vvedenie v fiziku tverdogo tela. [Introduction to Solid State Physics]. Moscow, Nauka, 1978, 798 p.

Zefirov N. S. Khimicheskaia entsiklopediia. Kn. 4 [Chemical Encyclopedia. Vol. 4], Moscow, Bol'shaia rossiiskaia entsiklopediia, 1995 (in Russian).

Bengston A., Danielsson L. Depth profiling of thin films using a Grimm-type glow discharge lamp. Thin Solid Films, 1985, no. 124, pp. 231-236.

Benninghoven A., Wiedmann L. Investigation of surface reactions by the static method of secondary ion mass spectrometry. IV. The oxidation of magnesium, strontium and barium in the monolayaer range. Surface science, 1974, no. 41, pp. 483-492.

Chanbasha A.R. A study of the effects of ultralow-energy secondary ion mass spectrometry (SIMS) on surface transient and depth resolution. Ph. D. diss. Singapore, 2007. 90 p.

Sputter Yields Values. Available at: http://www.npl.co.uk/science-technology/surface-and-nanoanalysis/services/sputter-yield-values (accessed 05.05.2015).

Kaminsky M. Atomic and ionic impact phenomena on metal surfaces. Springer-Verlag, 1965, 413 p.

Heide P. Secondary ion mass-spectrometry. An introduction to principles and practices. New York: J. Wiley and Sons, 2014, 386 p.

Useful Information and Facts about the Practice of Sputtering. Available at: http://www.specs.de/cms/upload/PDFs/IQE11-35/sputter-info.pdf (accessed 03.08.2015).

Van Wyk G.N., Lategan A.H. A formula for the calculation of the sputtering yield of polycrystalline materials. Radiation Effects Letters, 1982, no. 68, pp. 107-112.

Berish R. Raspylenie tverdykh tel ionnoi bombardirovkoi. Kn.1: Fizicheskoe raspylenie odnoelementnykh tverdykh tel [Sputtering of Solids by Particle Bombardment, Vol. 1: Physical sputtering of single-element solid], Moscow, Mir, 1984 (in Russian).

Sigmund P. Theory of sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets. Physical review, 1969, vol. 184, no. 2, pp. 383-416.

Seah M.P., Nunney T.S. Sputtering yields of compounds using argon ions. Journal of Physics D: Applied Physics, 2010, no. 43. pp. 1-12. doi: 10.1088/0022-3727/43/25/253001.

Seah M.P., Clifford C.A., Green F.M., Gilmore I.S. An accurate semi-empirical equation for sputtering yields I: for argon ions. Surface and interface analysis, 2005, no. 37. pp. 444-458. doi: 10.1002/sia.2032.

Seah M.P. An accurate semi-empirical equation for sputtering yields II: for neon and xenon ions. Nuclear Instrument and methods in physics research B, 2005, no. 229, pp. 348-358. doi:10.1016/j.nimb.2004.12.129.

Bert N.A., Pogrebitskii K.Iu., Soshnikov I.P., Iur'ev Iu.N. [Basic laws of spraying GaAs (001) Ar ions with an energy of Ar 1-9 keV]. Zhurnal tekhnicheskoi fiziki [Technical Physics], 1992, vol. 62, no. 4, pp. 162-170 (in Russian).

Drapkin B.M., Rudenko V.A. [Determining the energy of sublimation of metals]. Zhurnal tekhnicheskoi fiziki [Journal Technical Physics], 1992, vol. 62, no. 9, pp. 125-130 (in Russian).

Putilov K.A. Kurs fiziki. Tom 1. Mekhanika. Akustika. Molekuliarnaia fizika. Termodinamika [The course of physics. 1. Mechanics. Acoustics. Molecular Physics. Thermodynamics]. Moscow, Gosudarstvennoe izdatel'stvo fiziko-matematicheskoi literatury, 1963, 560 p.

Luchinskii G.P. Kurs khimii. Uchebnik dlia inzhenerno-tekhnicheskikh spetsial'nostei (nekhimicheskikh VUZov) [Chemistry course. Textbook for technical specialties (non-chemical universities)]. Moskow: Vysshaia shkola, 1985, 416 p. (in Russian)

Drapkin B.M., Rudenko V.A., Ziuzina O.V. Sposob opredeleniia sublimatsii metallov. [A method for determining metal sublimation]. Patent USSR № 4907530/25, 1993. (in Russian).

Ferster E., Rents B. Methoden der korrelations und regressionsanalyse. Verlag die wirtschaft Berlin, 1979, 302 p. (Russ. ed.: Ferster E., Rents B. Metody korreliatsionnogo i regressionnogo analiza. Moscow, Finansy i statistika, 1983, 302 p.


Ссылки

  • На текущий момент ссылки отсутствуют.