Cover Image

Determination of Bi in complex oxide samples by atomic absorption spectrometry by using ordinary acetylene – air flame atomization

Zoya A. Mikhaylovskaya, Elena S. Buyanova, Denis Yu. Smirnov

Abstract


In the present work the air/acetylene flame atomic absorption spectrometry was used for bismuth determination in complex oxides. Interference studies were carried out, and interference with vanadium and molybdenum was detected. The method of standard additions and traditional calibration curve method were used. Calibration and standard addition curves were fitted with linear and polynomial functions. It was shown that using polynomial function gives better results for the standard additions method for determination of bismuth by acetylene/air flame atomic absorption spectrometry. The calibration curve method was shown to be correct at low (< 10mg/L) concentration of an interferent.

Keywords


determination of bismuth; flame atomic absorption spectrometry; analysis of solid oxides

Full Text:

PDF

References


Cross LE, Pohanka RC. Ferroelectricity in bismuth oxide type layer structure compounds. Mat Res Bull. 1971;6(10):939-949. doi:10.1016/0025-5408(71)90072-9

Malathi A, Madhavan J, Ashokkumar M, Arunachalam P. A review on BiVO4 photocatalyst: Activity enhancement methods for solar photocatalytic applications. Appl Catal A. 2018;555:47-74. doi:10.1016/j.apcata.2018.02.010

Emelyanova YV, Mikhailovskaya ZA., Buyanova ES, Petrova SA. Synthesis, structure, and properties of substituted bismuth niobates Bi3Nb1-x ErxO7-d. Rus J Appl Chem. 2017;90(3):354-360. doi:10.1134/S1070427217030053

Vannier RN, Pernot E, Anne M, Isnard O, Nowogrocki G, Mairesse G. Bi4V2O11 polymorph crystal structures related to their electrical properties. Solid State Ionics. 2003;157(1):147-153. doi:10.1016/S0167-2738(02)00202-3

Kaur G, Pandey, OP, Singh K. Optical, structural, and mechanical properties of different valence-cation-doped bismuth vanadate oxides. Physica Status Solidi A. 2012;209(7):1231–1238. doi:10.1002/pssa.201127636

Wang J, Neaton B, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom, DG, Waghmare, UV, Spaldin NA, Rabe KM, Wuttig,M, Ramesh R. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science. 2003;299(5613):1719–1722. doi:10.1126/science.1080615.PMID 12637741.

Fu S, Ozoe H. Growth of Bi12GeO20 crystal rods and fibers by the improved floating zone method. J Mater Sci. 1999;34 (2):283–290. doi:10.1023/A:1004430311364.

Shen C, Zhang H, ZhangY, Xu H, Yu H, Wang J, Zhang S. Orientation and temperature dependence of piezoelectric properties for sillenite-type Bi12TiO20 and Bi12SiO20 single crystals. Crystals. 2014;4(2):141-151. doi:10.3390/cryst4020141

Das AK, Chakraborty R, Cervera ML., de la Guardia M. Analytical techniques for the determination of bismuth in solid environmental samples. Trends Anal Chem. 2006;25(6):599–608. doi:10.1016/j.trac.2006.01.006

Codony F, Domenico P, Mas J. Assessment of bismuth thiols and conventional disinfectants on drinking water biofilms. J Appl Microbiol. 2003;95(2):288-93. doi:10.1046/j.1365-2672.2003.01974.x

Madrakian T, Afkhami A, Esmaeili A. Spectrophotometric determination of bismuth in water samples after preconcentration of its thiourea-bromide ternary complex on activated carbon. Talanta. 2003;60(4):831-8. doi:10.1016/S0039-9140(03)00135-8

Pournaghi-Azar MH., Hossein M, Bahar S. Selective determination of trace-bismuth by extraction-differential pulse polarography in non-aqueous media. [Internet]. Iran J Chem Chem Eng. 2001;20(2):59-65. Available from: http://www.ijcce.ac.ir/article_9971_d79d426fa1a46f24492b40f4a3cc28d2.pdf

Şahan S, Saçmacı S, Şahin U., Ülgen A., Kartal S. An on-line preconcentration/ separation system for the determination of bismuth in environmental samples by FAAS, Talanta. 2010;80(5):2127-2131. doi:10.1016/j.talanta.2009.11.019

Afkhami A, Madrakian T, Siampour H. Cloud point extraction spectrophotometric determination of trace quantities of bismuth in urine. J Braz Chem Soc. 2006;17(4):797–802. doi:10.1590/S0103-50532006000400024

Kilinс E, Bakirdere S, Aydin F, Ataman YO. Sensitive determination of bismuth by flame atomic absorption spectrometry using atom trapping in a slotted quartz tube and revolatilization with organic solvent pulse. Spectrochim Acta Part B. 2012;7:84–88. doi:10.1016/j.sab.2012.06.004

Dedina J, Tsalev DL. Hydride Generation Atomic Absorption Spectrometry. Chicester : Wiley & Sons; 1995. 544 p.

Dobrowolski R, Dobrzynska J, Gawronska B. Determination of bismuth in environmental samples by slurry sampling graphite furnace atomic absorption spectrometry using combined chemical modifiers. Environ Monit Assess. 2015;187(4125):1–8. doi:10.1007/s10661-014-4125-7

SOLAAR CookBook. Recommendations for Atomic Absorbtion Determination of Elements. ThermoFisher Scientific; 2007.

Cookies on PerkinElmer: White papers. Sensitivity, Background, Noise and Calibration In Atomic Spectroscopy – Effects on Accuracy and Detection Limits. [Internet]. Available from: https://www.perkinelmer.com/lab-solutions/resources/docs/WHP_Atomic_Spectroscopy-Effects_on_Accuracy_and_Detection_Limits_013559_01.pdf




DOI: https://doi.org/10.15826/chimtech.2019.6.4.03

Copyright (c) 2019 Zoya A. Mikhaylovskaya, Elena S. Buyanova, Denis Yu. Smirnov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International